The Gray tensor product for 2-quasi-categories

نویسندگان

چکیده

We construct an $(\infty,2)$-version of the (lax) Gray tensor product. On 1-categorical level, this is a binary (or more generally $n$-ary) functor on category $\Theta_2$-sets, and it shown to be left Quillen with respect Ara's model structure. Moreover we prove that product forms part "homotopical" (biclosed) monoidal structure, or precisely normal lax structure associative up homotopy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor product for symmetric monoidal categories

We introduce a tensor product for symmetric monoidal categories with the following properties. Let SMC denote the 2-category with objects small symmetric monoidal categories, arrows symmetric monoidal functors and 2-cells monoidal natural transformations. Our tensor product together with a suitable unit is part of a structure on SMC that is a 2-categorical version of the symmetric monoidal clos...

متن کامل

A Cocategorical Obstruction to Tensor Products of Gray-categories

It was argued by Crans that it is too much to ask that the category of Gray-categories admit a well behaved monoidal biclosed structure. We make this precise by establishing undesirable properties that any such monoidal biclosed structure must have. In particular we show that there does not exist any tensor product making the model category of Gray-categories into a monoidal model category.

متن کامل

The 2-category theory of quasi-categories

In this paper we re-develop the foundations of the category theory of quasicategories (also called ∞-categories) using 2-category theory. We show that Joyal’s strict 2-category of quasi-categories admits certain weak 2-limits, among them weak comma objects. We use these comma quasi-categories to encode universal properties relevant to limits, colimits, and adjunctions and prove the expected the...

متن کامل

BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2020.107461